Abstract
▪ Abstract Quasar (QSO) elemental abundances provide unique probes of high-redshift star formation and galaxy evolution. There is growing evidence from both the emission and intrinsic absorption lines that QSO environments have roughly solar or higher metallicities out to redshifts >4. The range is not well known, but solar to a few times solar metallicity appears to be typical. There is also evidence for higher metallicities in more luminous objects and for generally enhanced N/C and Fe/α abundances compared with solar ratios. These results identify QSOs with vigorous, high-redshift star formation—consistent with the early evolution of massive galactic nuclei or dense protogalactic clumps. However, the QSOs offer new constraints. For example, (a) most of the enrichment and star formation must occur before the QSOs “turn on” or become observable, on time scales of 1 Gyr at least at the highest redshifts. (b) The tentative result for enhanced Fe/α suggests that the first local star formation began at least...
All Related Versions