On the Shallow Water Equations at Low Reynolds Number
- 1 January 1991
- journal article
- research article
- Published by Taylor & Francis in Communications in Partial Differential Equations
- Vol. 16 (1) , 59-104
- https://doi.org/10.1080/03605309108820752
Abstract
The vertial averages of the incompressible Navier-Stokes equaitons are studied from the point of view of numerical analysis:existence of solution and converagence of algorithms. Three formulations are analysed; existence theorems are obtained when the Reynolds number is small. Convergene of a time implict algorithm is shown, while discretization in space is achived with the finite element method Résumé On étudie, due vue de l'analyse numérique, le problé obtenu en Prenant la moyenne verticale des équations de Navier-stokes: on s'intéresse á l'existence de solutions et á la convergence d'algorithmes. Trois formulations sont analysées; on déor$eacute;mes d'existence pour de faibles valeurs du nombrede Reynolds. On prouve la convergence d'un schéma implicite en temps, tandis que la discr$eacute;tisation en espace est effectuée par éléments finisKeywords
This publication has 9 references indexed in Scilit:
- A posteriori error estimates for the Stokes equations: A comparisonComputer Methods in Applied Mechanics and Engineering, 1990
- Numerical analysis for compressible viscous isentropic stationary flowsIMPACT of Computing in Science and Engineering, 1989
- On the existence of stationary solutions to compressible Navier–Stokes equationsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire, 1987
- Finite element method for moving boundary problems in river flowInternational Journal for Numerical Methods in Fluids, 1986
- A stable finite element for the stokes equationsCalcolo, 1984
- Selective lumping finite element method for shallow water flowInternational Journal for Numerical Methods in Fluids, 1982
- Best constant in Sobolev inequalityAnnali di Matematica Pura ed Applicata (1923 -), 1976
- Interpolation SpacesPublished by Springer Nature ,1976
- Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinusAnnales de l'institut Fourier, 1965