Abstract
This study was designed to evaluate the role of phosphatidylinositol (PI3) kinase, p70 S6 kinase (p70S6K), and mitogen-activated protein (MAP) kinase in the regulation of muscle protein metabolism by insulin and insulin-like growth factor I (IGF-I). Wortmannin and LY294002 (inhibitors of P13 kinase) both abolished the stimulation of protein synthesis by insulin or IGF-I in epitrochlearis muscle incubated in vitro. LY294002 also totally reversed the antiproteolytic action of these hormones. Although p70S6K activation by insulin and IGF-I may be mediated by PI3 kinase in epitrochlearis muscle, the specific inhibition of this kinase by rapamycin caused only partial (25%) inhibition of the stimulation of protein synthesis by these two hormones. Rapamycin had no effect on proteolysis. Finally, insulin or IGF-I did not stimulate MAP kinase activity at any of the times tested (2-25 min), suggesting that this protein kinase was not directly involved in the regulation of muscle protein metabolism. These observations provide evidence that PI3 kinase and p70S6K, but not MAP kinase, play a role in the regulation of muscle protein turnover by insulin or IGF-I.

This publication has 0 references indexed in Scilit: