Shrimp Yields and Economic Potential of Intensive Round Pond Systems

Abstract
Three intensive growout trials using Penaeus vunnumei were conducted in round ponds in Hawaii in 1987. A 337 m2 experimental pond was stocked at 100 shrimp/m2 for two trials; a 2,000 m2 commercial prototype pond was stocked at 75/m2 for one trial.In the experimental pond trials, shrimp survival averaged 88 ± 10% (SE) and feed conversion averaged 2.2 ± 0.2. Growth averaged 1.5 ± 0.3 g/week, yielding 18.2 ± 1.7 gram shrimp in 80 ± 5.5 days. Combined production in the experimental trials was 32,272 kg/ha in 174 days (from stocking of trial 1 to harvest of trial 2). Comparing these results to 1986 results (Wyban and Sweeney 1988), it was concluded that shrimp growth is not affected and production is doubled by increasing stocking density from 45/m2 to 100/m2.Pooling data from 1986 and 1987, a significant linear regression was obtained when weekly growth of shrimp above four grams individual size was regressed on mean weekly pond temperature: growth = 0.37 * temperature ‐ 8.44, (r2= 0.41; P < 0.01). Multiple regression to examine effects of shrimp size, pond biomass, and shrimp age on the temperature‐growth relationship was not significant.In the commercial prototype pond trial, survival was 67% and feed conversion was 2.0. Growth averaged 1.4 g/week, yielding 18.1 gram shrimp in 88 days. Production was 9,120 kg/ha. Individual shrimp size distribution at harvest in the commercial pond was similar to experimental pond results, indicating that shrimp growth in the two systems was comparable.Financial characteristics of a hypothetical 24 pond shrimp farm using these results were determined using an electronic spreadsheet model (hung and Rowland 1987). Feed costs were 40% of total operating costs while postlarvae and labor were 14% and 16% of total operating costs, respectively. Breakeven price (BEP) was far more sensitive to changes in revenuedetermining inputs such as survival and growth than to comparable changes in costdetermining inputs such as feed and postlarvae costs.Together these results suggest that commercial scale round pond production mimics experimental scale production and that round pond technology has commercial potential.