A new kinesin tree

Abstract
The new kinesin phylogenetic tree is a re-evaluation of the kinesin microtubule motor protein family (Kim and Endow, 2000) (see also Miki et al., 2001; Lawrence et al., 2002), inspired by the recent completion of the genome sequences of humans and several model organisms. The kinesin motors hydrolyze ATP as they move along microtubules, transporting vesicles and organelles (Hirokawa, 1998) and performing essential roles in chromosome motility and spindle assembly and function (Inoué and Salmon, 1995; Endow, 1999; Sharp et al., 2000). The new kinesin tree includes 155 proteins from 11 species and focuses on the organisms Plasmodium falciparum, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens and Arabidopsis thaliana – a protist, a yeast, two invertebrates, a vertebrate and a higher plant. The focus on humans and selected model organisms provides a look at the evolutionary relationships of the kinesin proteins from several well-studied species. A notable feature of the new tree is the emergence of several new groups consisting only of Arabidopsis proteins, which suggests that the kinesin motors may have a broader range of functions in higher plants than in other organisms.