Abstract
We describe two dimensional models with a metallic Fermi surface which display quantum phase transitions controlled by strongly interacting critical field theories below their upper critical dimension. The primary examples involve transitions with a topological order parameter associated with dislocations in collinear spin density wave ("stripe") correlations: the gapping of the order parameter fluctuations leads to a fractionalization of spin and charge collective modes, and this transition has been proposed as a candidate for the cuprates near optimal doping. The coupling between the order parameter and long-wavelength volume and shape deformations of the Fermi surface is analyzed by the renormalization group, and a runaway flow to a non-perturbative regime is found in most cases. A phenomenological scaling analysis of simple observable properties of possible second order quantum critical points is presented, with results quite similar to those near quantum spin glass transitions and to phenomenological forms proposed by Schroeder et al. (Nature 407, 351 (2000)).

This publication has 0 references indexed in Scilit: