Abstract
A reflection in Euclidean n-dimensional space is a particular type of congruent transformation which is of period two and leaves a prime (i.e., hyperplane) invariant. Groups generated by a number of these reflections have been extensively studied [5, pp. 187-212]. They are of interest since, with very few exceptions, the symmetry groups of uniform polytopes are of this type. Coxeter has also shown [4] that it is possible, by Wythoff's construction, to derive a number of uniform polytopes from any group generated by reflections. His discussion of this construction is elegantly illustrated by the use of a graphical notation [4, p. 328; 5, p. 84] whereby the properties of the polytopes can be read off from a simple graph of nodes, branches, and rings.

This publication has 11 references indexed in Scilit: