Quasiconvex Sets
- 1 January 1950
- journal article
- Published by Canadian Mathematical Society in Canadian Journal of Mathematics
- Vol. 2, 489-507
- https://doi.org/10.4153/cjm-1950-046-x
Abstract
Introduction. Let I be the closed real number interval: Any subset Δ of I containing at least one number interior to I, will be called a quasiconvexity generating set. To each quasiconvexity generating set Δ we associate as follows a generalized notion of convexity, here called quasiconvexity or Δ convexity. Two numbers α and β, one of which belongs to Δ, the other being determined by the relation a α + β = 1, are called complementary ratios of Δ. A set Q in a real vector space is said to be A convex if for every pair of complementary ratios α and β in Δ and every pair of points a and b lying in Q the point αa +β b also lies in Q.Keywords
This publication has 22 references indexed in Scilit:
- On the functional equation f(x+y) =f(x) +f(y)Fundamenta Mathematicae, 1947
- Connected and disconnected plane sets and the functional equation 𝑓(𝑥)+𝑓(𝑦)=𝑓(𝑥+𝑦)Bulletin of the American Mathematical Society, 1942
- Measure and other properties of a Hamel basisBulletin of the American Mathematical Society, 1942
- Une remarque sur les quations fonctionnellesCommentarii Mathematici Helvetici, 1936
- Contribution à l'étude des ensembles de distances de pointsFundamenta Mathematicae, 1925
- Sur l'ensemble de distances entre les points d'un ensembleFundamenta Mathematicae, 1925
- Sur une propriété des fonctions de M. HamelFundamenta Mathematicae, 1924
- Sur les fonctions convexes et les inégalités entre les valeurs moyennesActa Mathematica, 1906
- Eine Basis aller Zahlen und die unstetigen L sungen der Funktionalgleichung:f(x+y)=f(x)+f(y)Mathematische Annalen, 1905
- Sur le théorème fondamental de la géométrie projectiveMathematische Annalen, 1880