Abstract
To identify and investigate the cAMP binding sites of human red cell membranes a photoaffinity analog of cAMP, 8-azidoadenosine 3',5'-cyclic monophosphate (8-N3cAMP), has been synthesized. This analog activates cAMP-dependent protein kinase(s) in the red cell membrane. It exhibits tight, but reversible binding to the membranes which is competitive with cAMP. Photolysis of [32P]-8-N3cAMP with red cell membranes results in covalent incorporation of radioactive label onto two specific membrane proteins. This incorporation requires activating light and is reduced to background levels with addition of low levels of cAMP. Prephotolysis of 8-N3cAMP completely abolished its ability to photolabel membrane proteins. Both the reversible and photocatalyzed binding of 8-N3cAMP show saturation kinetics. The molecular weights of the two primarily labeled proteins are approximately 49,000 and 55,000. The differential effects of cAMP, ATP, and adenosine on the photocatalyzed incorporation of [32P]-8-N3cAMP onto these two proteins suggest that they have biochemically different properties. The potential usefulness of this compound for investigating various molecular aspects of cAMP action is discussed.

This publication has 0 references indexed in Scilit: