Correspondence between anomalous m‐ and Δ Cp‐values in protein folding
- 1 December 2004
- journal article
- Published by Wiley in Protein Science
- Vol. 13 (12) , 3253-3263
- https://doi.org/10.1110/ps.04991004
Abstract
Proteins folding according to a classical two-state system characteristically show V-shaped chevron plots. We have previously interpreted the symmetrically curved chevron plot of the protein U1A as denaturant-dependent movements in the position of the transition state ensemble (TSE). S6, a structural analog of U1A, shows a classical V-shaped chevron plot indicative of straightforward two-state kinetics, but the mutant LA30 has a curved unfolding limb, which is most consistent with TSE mobility. The kinetic m-values (derivatives of the rate constants with respect to denaturant concentration) in themselves depend on denaturant concentration. To obtain complementary information about putative mobile TSEs, we have carried out a thermodynamic analysis of the three proteins, based on data for refolding and unfolding over the range 10 degrees C to 70 degrees C. The data at all temperatures can be fitted to two-state model systems. Importantly, for all three proteins the activation heat capacities are, within error, identical to the heat capacities measured in independent experiments under equilibrium conditions. Although the equilibrium heat capacities are essentially invariant with regard to denaturant concentration, the activation heat capacities, similar to the structurally equivalent kinetic m-values, show marked denaturant dependence. Furthermore, the values of beta++ at different denaturant concentrations measured by m-values and by heat capacity values are very similar. These observations are consistent with significant transition state movements within the framework of two-state folding. The basis for TSE movement appears to be enthalpic rather than entropic, suggesting that the binding energy of denaturant-protein interactions is a major determinant of the response of energy landscape contours to changing environments.Keywords
This publication has 41 references indexed in Scilit:
- The folding of an enzyme: I. Theory of protein engineering analysis of stability and pathway of protein foldingPublished by Elsevier ,2004
- Conformational plasticity in folding of the split β-α-β protein S6: evidence for burst-phase disruption of the native state 1 1Edited by A. R. FershtJournal of Molecular Biology, 2002
- Apparent two-state tendamistat folding is a sequential process along a defined route11Edited by A. R. FershtJournal of Molecular Biology, 2001
- High-Energy Channeling in Protein FoldingBiochemistry, 1997
- Thermodynamic Properties of an Extremely Rapid Protein Folding ReactionBiochemistry, 1996
- Thermodynamic study of the acid denaturation of barnase and its dependence on ionic strength: Evidence for residual electrostatic interactions in the acid/thermally denatured stateBiochemistry, 1994
- Protein interactions with urea and guanidinium chlorideJournal of Molecular Biology, 1992
- Heat capacity of proteinsJournal of Molecular Biology, 1990
- Heat capacity of proteinsJournal of Molecular Biology, 1990
- A Correlation of Reaction RatesJournal of the American Chemical Society, 1955