Abstract
For lightly loaded fluid film bearings in which gaseous cavitation occurs, application of the continuity boundary condition at the liquid-gas interface is not satisfactory. Two alternative boundary conditions have been postulated. The purpose of this paper is to examine the separation boundary condition; in particular, the effect of both bounding surfaces being in motion is studied. This situation might be used as a basis for experimental work designed to select the most appropriate boundary condition for lightly loaded bearings. In Part 2, the boundary condition is used to analyse the cylinder-plane and journal bearing configurations. The theoretical predictions for the operating parameters are examined to see if their magnitudes and/or trends could be used for comparing the available cavitation boundary conditions.

This publication has 5 references indexed in Scilit: