When Weak Inhibition Synchronizes Strongly Desynchronizing Networks of Bursting Neurons

Abstract
We show that weak common inhibition applied to a network of bursting neurons with strong desynchronizing connections can induce burst and complete synchronization. We demonstrate that the weak synchronizing inhibition from the same pacemaker neuron can win out over much stronger desynchronizing connections within the network, provided that the neuron’s duty cycle is sufficiently long. We also gain insight into how the changes in burst duty cycles can trigger unexpected clusters of synchrony in bursting networks.