Abstract
A circulating fluid motion is generated by an electric field imposed on a dielectric drop in another dielectric liquid. The motion of the drop surface may be from the poles to the equator or from the equator to the poles. Transient heat or mass transfer results in response to a sudden change in the temperature difference or concentration difference between the drop and the surrounding fluid. The low Reynolds number, high Peclet number response is analyzed. The boundary layer equations are solved exactly using a similarity transformation. Results are obtained for both directions of circulation. While local fluxes differ greatly when the flow reverses, and despite a lack of symmetry, the overall transfer rate is independent of the direction of flow. This result applies to the transient as well as the steady state.