Evolutionary reconstruction of networks

Abstract
Can a graph specifying the pattern of connections of a dynamical network be reconstructed from statistical properties of a signal generated by such a system? In this model study, we present a Metropolis algorithm for reconstruction of graphs from their Laplacian spectra. Through a stochastic process of mutations and selection, evolving test networks converge to a reference graph. Applying the method to several examples of random graphs, clustered graphs, and small-world networks, we show that the proposed stochastic evolution allows exact reconstruction of relatively small networks and yields good approximations in the case of large sizes.
All Related Versions

This publication has 12 references indexed in Scilit: