Molecular mixing via jets in confined volumes

Abstract
A simple model is proposed to describe the molecular mixing characteristics of a two-dimensional turbulent jet that is discharged into a confined volume. The model, which is based on similarity and physical considerations of only the large-scale motions, derives the characteristic time for the problem and identifies the regime for which the mixing will be most rapid. Results are reported for experiments where helium and helium/argon mixtures were injected into a cylindrical volume initially containing air. Using an aspirating probe that measured transient helium concentrations in the volume, the mixing time was determined as a function of the size of the confining volume and the injection parameters. The experimental results are in general accord with the model, and validate the use of the model for the determination of the minimum mixing time.