Quantum transport in a multiwalled carbon nanotube
Preprint
- 14 December 1995
Abstract
We report on electrical resistance measurements of an individual carbon nanotube down to a temperature T=20 mK. The conductance exhibits a ln T dependence and saturates at low temperature. A magnetic field applied perpendicular to the tube axis, increases the conductance and produces aperiodic fluctuations. The data find a global and coherent interpretation in terms of two-dimensional weak localization and universal conductance fluctuations in mesoscopic conductors. The dimensionality of the electronic system is discussed in terms of the peculiar structure of carbon nanotubes.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: