Mutations in Cytochrome b Resulting in Atovaquone Resistance Are Associated with Loss of Fitness in Plasmodium falciparum
- 1 August 2002
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 46 (8) , 2435-2441
- https://doi.org/10.1128/aac.46.8.2435-2441.2002
Abstract
Drug resistance in malarial parasites has become a major obstacle in the control of the disease. Strategies are urgently needed to control the development of resistance and to possibly reverse existing resistance. One key element required to reverse malaria drug resistance is for the parasites to “pay” a biological “cost” or suffer a loss of fitness when acquiring resistance to antimalarial drugs. Such a situation would be a disadvantage to the resistant parasites in the absence of drug pressure. We compared here the relative fitness of atovaquone-resistant Plasmodium falciparum K1 clones with single and double base mutations in their cytochrome b genes to their parent clones during erythrocytic stages in the absence of drug pressure. We found that the double amino acid mutation (M133I and G280D) is associated with a 5 to 9% loss of fitness and that the single amino acid change of M133I did not result in any detectable loss of fitness. Molecular modeling of the interaction of P. falciparum cytochrome b with ubiquinone led to the prediction that a loss of fitness of the malaria parasites would result from the G280D mutation due to its close proximity to the putative ubiquinone-binding site. This appears to have resulted in a weakening of the cytochrome b -ubiquinone complex, thereby causing the electron transport chain to become less efficient. Our results suggest that the prevalence of resistant parasites may decrease after the drug usage is discontinued.Keywords
This publication has 35 references indexed in Scilit:
- Three Molecules of Ubiquinone Bind Specifically to Mitochondrial Cytochrome bc 1ComplexJournal of Biological Chemistry, 2001
- The GROMOS Biomolecular Simulation Program PackageThe Journal of Physical Chemistry A, 1999
- Clone multiplicity of Plasmodium falciparum infections in individuals exposed to variable levels of disease transmissionTransactions of the Royal Society of Tropical Medicine and Hygiene, 1998
- Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. CohenJournal of Molecular Biology, 1997
- Features of recrudescent chloroquine-resistant Plasmodium falciparum infections confer a survival advantage on parasites and have implications for disease controlTransactions of the Royal Society of Tropical Medicine and Hygiene, 1996
- GROMACS: A message-passing parallel molecular dynamics implementationComputer Physics Communications, 1995
- Size variation in chromosomes from independent cultured isolates of Plasmodium falciparumNature, 1985
- Molecular dynamics with coupling to an external bathThe Journal of Chemical Physics, 1984
- Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresisCell, 1984
- Human Malaria Parasites in Continuous CultureScience, 1976