Simple Three-Integral Scale-Free Galaxy Models

Abstract
The Jeans equations give the second moments or stresses required to support a stellar population against the gravity field. A general solution of the Jeans equations for arbitrary axisymmetric scale-free densities in flattened scale-free potentials is given. A two-parameter subset of the solution for the second moments for the self-consistent density of the power-law models, which have exactly spheroidal equipotentials, is examined in detail. In the spherical limit, the potential of these models reduces to that of the singular power-law spheres. We build the physical three-integral distribution functions that correspond to the flattened stellar components. Next, we attack the problem of finding distribution functions associated with the Jeans solutions in flattened scale-free potentials. The third or partial integral introduced by de Zeeuw, Evans and Schwarzschild for Binney's model is generalised to thin and near-thin orbits moving in arbitrary axisymmetric scale-free potentials. The partial integral is a modification of the total angular momentum. For the self-consistent power-law models, we show how this enables the construction of simple three-integral distribution functions. The connexion between these approximate distribution functions and the Jeans solutions is discussed in some detail.

This publication has 0 references indexed in Scilit: