Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry
Open Access
- 17 October 2006
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (42) , 15641-15645
- https://doi.org/10.1073/pnas.0601977103
Abstract
The neurobiological mechanisms underlying overeating in obesity are not understood. Here, we assessed the neurobiological responses to an Implantable Gastric Stimulator (IGS), which induces stomach expansion via electrical stimulation of the vagus nerve to identify the brain circuits responsible for its effects in decreasing food intake. Brain metabolism was measured with positron emission tomography and 2-deoxy-2[18F]fluoro-d-glucose in seven obese subjects who had the IGS implanted for 1–2 years. Brain metabolism was evaluated twice during activation (on) and during deactivation (off) of the IGS. The Three-Factor Eating Questionnaire was obtained to measure the behavioral components of eating (cognitive restraint, uncontrolled eating, and emotional eating). The largest difference was in the right hippocampus, where metabolism was 18% higher (P < 0.01) during the “on” than “off” condition, and these changes were associated with scores on “emotional eating,” which was lower during the on than off condition and with “uncontrolled eating,” which did not differ between conditions. Metabolism also was significantly higher in right anterior cerebellum, orbitofrontal cortex, and striatum during the on condition. These findings corroborate the role of the vagus nerve in regulating hippocampal activity and the importance of the hippocampus in modulating eating behaviors linked to emotional eating and lack of control. IGS-induced activation of regions previously shown to be involved in drug craving in addicted subjects (orbitofrontal cortex, hippocampus, cerebellum, and striatum) suggests that similar brain circuits underlie the enhanced motivational drive for food and drugs seen in obese and drug-addicted subjects, respectively.Keywords
This publication has 43 references indexed in Scilit:
- Ghrelin controls hippocampal spine synapse density and memory performanceNature Neuroscience, 2006
- Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effectsNeuroscience & Biobehavioral Reviews, 2005
- Interaction between the Amygdala and the Medial Temporal Lobe Memory System Predicts Better Memory for Emotional EventsNeuron, 2004
- The hippocampus and inhibitory learning: a ‘Gray’ area?Neuroscience & Biobehavioral Reviews, 2004
- Persistence of abnormal neural responses to a meal in postobese individualsInternational Journal of Obesity, 2003
- Functional neuroimaging of gastric distentionJournal of Gastrointestinal Surgery, 2003
- Correlation between GABAA receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsyPublished by Elsevier ,2003
- Gastric Pacing as Therapy for Morbid Obesity: Preliminary ResultsObesity Surgery, 2002
- Outward Searchers: SETI Pioneers . Scientists Talk about Their Search for Extraterrestrial Intelligence. DAVID W. SWIFT. University of Arizona Press, Tucson, 1990. xiv, 436 pp., illus. $35Science, 1990
- Cerebellar afferent fibres from the dorsal motor vagal nucleus in the catNeuroscience Letters, 1982