Sulfenic Acid Formation in Human Serum Albumin by Hydrogen Peroxide and Peroxynitrite
Top Cited Papers
- 1 August 2003
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 42 (33) , 9906-9914
- https://doi.org/10.1021/bi027434m
Abstract
Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises ∼80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a second-order rate constant of 2.26 M-1 s-1 at pH 7.4 and 37 °C and a 1:1 stoichiometry. The formation of intermolecular disulfide dimers was not observed, suggesting that the thiol was being oxidized beyond the disulfide. With the reagent 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), we were able to detect the formation of sulfenic acid (HSA-SOH) from the UV−vis spectra of its adduct. The formation of sulfenic acid in Cys34 was confirmed by mass spectrometry using 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Sulfenic acid was also formed from exposure of HSA to peroxynitrite, the product of the reaction between nitric oxide and superoxide radicals, in the absence or in the presence of carbon dioxide. The latter suggests that sulfenic acid can also be formed through free radical pathways since following reaction with carbon dioxide, peroxynitrite yields carbonate radical anion and nitrogen dioxide. Sulfenic acid in HSA was remarkably stable, with ∼15% decaying after 2 h at 37 °C under aerobic conditions. The formation of glutathione disulfide and mixed HSA-glutathione disulfide was determined upon reaction of hydrogen peroxide-treated HSA with glutathione. Thus, HSA-SOH is proposed to serve as an intermediate in the formation of low molecular weight disulfides, which are the predominant plasma form of low molecular weight thiols, and in the formation of mixed HSA disulfides, which are present in ∼25% of circulating HSA.Keywords
This publication has 17 references indexed in Scilit:
- Carbon Dioxide Stimulates the Production of Thiyl, Sulfinyl, and Disulfide Radical Anion from Thiol Oxidation by PeroxynitriteJournal of Biological Chemistry, 2001
- Peroxynitrite Reaction with Carbon Dioxide/Bicarbonate: Kinetics and Influence on Peroxynitrite-Mediated OxidationsArchives of Biochemistry and Biophysics, 1996
- Rapid reaction between peroxonitrite ion and carbon dioxide: Implications for biological activityJournal of the American Chemical Society, 1995
- Peroxynitrite‐mediated oxidation of albumin to the protein‐thiyl free radicalFEBS Letters, 1994
- The antioxidants of human extracellular fluidsArchives of Biochemistry and Biophysics, 1990
- A simple method for displaying the hydropathic character of a proteinJournal of Molecular Biology, 1982
- A precise method for the determination of whole blood and plasma sulfhydryl groupsAnalytical Biochemistry, 1979
- Reaction of chicken egg white lysozyme with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole. II. Sites of modificationBiochimica et Biophysica Acta (BBA) - Protein Structure, 1976
- The reactivity of SH groups with a fluorogenic reagentFEBS Letters, 1970
- The Effect of Age and Protein Deprivation on the Sulfhydryl Content of Serum AlbuminJournal of Gerontology, 1970