A Better Model of Acute Pancreatitis for Evaluating Therapy

Abstract
Existing models of acute pancreatitis have limitations to studying novel therapy. Whereas some produce mild self-limited pancreatitis, others result in sudden necrotizing injury. The authors developed an improved model providing homogeneous moderately severe injury by superimposing secretory hyperstimulation on minimal intraductal bile acid exposure. Sprague-Dawley rats (n = 231) received low-pressure intraductal glycodeoxycholic acid (GDOC) at very low (5 or 10 mmol/L) concentrations followed by intravenous cerulein. Cerulein or GDOC alone caused only very mild inflammation. However, GDOC combined with cerulein was uniformly associated with more edema (p < 0.0005), acinar necrosis (p < 0.01), inflammation (p < 0.006), and hemorrhage (p < 0.01). Pancreatic injury was further increased and death was potentiated by increasing volume and duration of intraductal low-dose GDOC infusion. There was significant morphologic progression between 6 and 24 hours. The authors conclude that (1) combining minimal intraductal bile acid exposure with intravenous hyperstimulation produces homogeneous pancreatitis of intermediate severity that can be modulated at will; (2) the injury is progressive over at least 24 hours with finite mortality rate; (3) the model provides superior opportunity to study innovative therapy.