Macroscopic fluctuation theory for stationary non equilibrium states
Preprint
- 14 February 2002
Abstract
We formulate a dynamical fluctuation theory for stationary non equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager-Machlup theory in the SNS; a general Hamilton-Jacobi equation for the macroscopic entropy; a non equilibrium, non linear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a non linear ordinary differential equation; by using the Hamilton-Jacobi equation, we obtain an logically independent derivation of this result.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: