Bothrojaracin, a Proexosite I Ligand, Inhibits Factor Va-Accelerated Prothrombin Activation

Abstract
Bothrojaracin (BJC) is a 27 kDa snake venom protein from Bothrops jararaca that has been characterized as a potent ligand (K D = 75 nM) of human prothrombin (Monteiro RQ, Bock PE, Bianconi ML, Zingali RB, Protein Sci 2001; 10: 1897-904). BJC binds to the partially exposed anion-binding exosite I (proexosite I) forming a stable 1:1, non-covalent complex with the zymogen whereas no interaction with fragment 1 or 2 domains is observed. In addition, BJC interacts with thrombin through exosites I and II (K D = 0.7 nM), and influences but does not block the proteinase catalytic site. In the present work we studied the effect of BJC on human prothrombin activation by factor Xa in the absence or in the presence of its cofactors, factor Va and phospholipids. In the absence of phospholipids, BJC strongly inhibited (80%) the zymogen activation by factor Xa in the presence but not in the absence of factor Va, suggesting a specific interference in the cofactor activity. In the presence of phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine), BJC also inhibited (35%) prothrombin activation by factor Xa in the presence but not in the absence of factor Va. BJC showed a higher inhibitory effect (70%) towards thrombin formation by prothrombinase complex assembled on phospholipid vesicles composed by 95% phosphatidylcholine, 5% phosphatidylserine. Activation of prothrombin by platelet-assembled prothrombinase complex (factor Xa, factor Va and thrombin-activated platelets) showed that hirudin54-65(SO3-) and BJC efficiently inhibit the thrombin formation (43% and 84%, respectively). Taken together, our results suggest that proexosite I blockage decreases the productive recognition of prothrombin as substrate by factor Xa-factor Va complex and prothrombinase complex. Furthermore, data obtained with human platelets suggest that proexosite I may play an important role in the physiological activation of prothrombin.