Prokaryotic Homologs of the Eukaryotic DNA-End-Binding Protein Ku, Novel Domains in the Ku Protein and Prediction of a Prokaryotic Double-Strand Break Repair System
Open Access
- 1 August 2001
- journal article
- Published by Cold Spring Harbor Laboratory in Genome Research
- Vol. 11 (8) , 1365-1374
- https://doi.org/10.1101/gr.181001
Abstract
Homologs of the eukaryotic DNA-end-binding protein Ku were identified in several bacterial and one archeal genome using iterative database searches with sequence profiles. Identification of prokaryotic Ku homologs allowed the dissection of the Ku protein sequences into three distinct domains, the Ku core that is conserved in eukaryotes and prokaryotes, a derived von Willebrand A domain that is fused to the amino terminus of the core in eukaryotic Ku proteins, and the newly recognized helix–extension–helix (HEH) domain that is fused to the carboxyl terminus of the core in eukaryotes and in one of the Ku homologs from the Actinomycete Streptomyces coelicolor. The version of the HEH domain present in eukaryotic Ku proteins represents the previously described DNA-binding domain called SAP. The Ku homolog from S. coelicolor contains a distinct version of the HEH domain that belongs to a previously unnoticed family of nucleic-acid-binding domains, which also includes HEH domains from the bacterial transcription termination factor Rho, bacterial and eukaryotic lysyl-tRNA synthetases, bacteriophage T4 endonuclease VII, and several uncharacterized proteins. The distribution of the Ku homologs in bacteria coincides with that of the archeal-eukaryotic-type DNA primase and genes for prokaryotic Ku homologs form predicted operons with genes coding for an ATP-dependent DNA ligase and/or archeal-eukaryotic-type DNA primase. Some of these operons additionally encode an uncharacterized protein that may function as nuclease or an Slx1p-like predicted nuclease containing a URI domain. A hypothesis is proposed that the Ku homolog, together with the associated gene products, comprise a previously unrecognized prokaryotic system for repair of double-strand breaks in DNA.Keywords
This publication has 49 references indexed in Scilit:
- Human Ku70 Interacts with Heterochromatin Protein 1αPublished by Elsevier ,2001
- Functional Interaction between Ku and the Werner Syndrome Protein in DNA End ProcessingJournal of Biological Chemistry, 2000
- Defining Functional Domains of Ku80: DNA End Binding and Survival after RadiationBiochemical and Biophysical Research Communications, 1999
- Eukaryotic Signalling Domain Homologues in Archaea and Bacteria. Ancient Ancestry and Horizontal Gene TransferJournal of Molecular Biology, 1999
- Subcellular Localization and Protein-Protein Interaction Regions of Ku ProteinsBiochemical and Biophysical Research Communications, 1998
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Protein fold recognition by prediction-based threadingJournal of Molecular Biology, 1997
- SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modelingElectrophoresis, 1997
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994
- Prediction of Protein Secondary Structure at Better than 70% AccuracyJournal of Molecular Biology, 1993