Microwave Manipulation of an Atomic Electron in a Classical Orbit

Abstract
Although an atom is a manifestly quantum mechanical system, the electron in an atom can be made to move in a classical orbit almost indefinitely if it is exposed to a weak microwave field oscillating at its orbital frequency. The field effectively tethers the electron, phase-locking its motion to the oscillating microwave field. By exploiting this phase-locking, we have sped up or slowed down the orbital motion of the electron in excited lithium atoms by increasing or decreasing the microwave frequency between 13 and 19 gigahertz; the binding energy and orbital size change concurrently.