• 18 March 1999
Abstract
We analyze the ASCA spectra accumulated within ~100 kpc radii of 12 of the brightest groups of galaxies. Upon fitting isothermal models (1T) jointly to the ASCA SIS and GIS spectra we obtain fits for most groups that are of poor or at best marginal quality and give very sub-solar metallicities similar to previous studies, = 0.29 +/- 0.12 Z_sun. Two-temperature models (2T) provide significantly better fits for 11 out of the 12 groups and in every case have metallicities that are substantially larger than obtained for the 1T models, = 0.75 +/- 0.24 Z_sun. Although not very well constrained, for most of the groups absorption in excess of the Galactic value is indicated for the cooler temperature component of the 2T models. A simple multiphase cooling flow model gives results analogous to the 2T models including large metallicities, = 0.65 +/- 0.17 Z_sun. The nearly solar Fe abundances and also solar alpha/Fe ratios indicated by the 2T and cooling flow models are consistent with the standard models of chemical enrichment of ellipticals, groups, and clusters. Thus, we have shown that the very sub-solar Fe abundances and Si/Fe enhancements obtained from previous studies are an artifact of their fitting isothermal models to the X-ray spectra which also has been recently demonstrated for the brightest elliptical galaxies. Owing to the importance of these results for interpreting X-ray spectra, in an appendix we use simulated ASCA observations to examine in detail the ``Fe bias'' and ``Si bias'' associated with the spectral fitting of ellipticals, groups, and clusters of galaxies.

This publication has 0 references indexed in Scilit: