Innate Sensing of HIV-Infected Cells
Top Cited Papers
Open Access
- 17 February 2011
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Pathogens
- Vol. 7 (2) , e1001284
- https://doi.org/10.1371/journal.ppat.1001284
Abstract
Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection. AIDS is characterized by a hyperactivation of the immune system. Innate and inflammatory responses, associated with an exacerbated production of cytokines like type I interferons (IFN) and of chemokines, deregulate the normal functioning of T lymphocytes and other cells. The events that trigger this inappropriate activation remain poorly understood. Plasmacytoid dendritic cells (pDCs) normally produce IFN when they encounter viruses. Here we examined how HIV-infected cells are recognized by pDCs, as well as by other immune and non-immune cells. We show that viruses transmitted via cell-to-cell contacts are more potent inducers of IFN than cell-free viral particles. In pDCs, recognition occurs in large part through TLR7, a cellular receptor detecting viral genetic materials after capture in intracellular vesicles. Donor cells expressing replication-defective viruses are also able to trigger IFN production by target cells. We further show that in TLR7-negative, non-hematopoietic cells an additional cytoplasmic pathway allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs at different intracellular localizations, and does not require ongoing viral replication. Characterization of the mechanisms of innate HIV-1 recognition allows a better understanding of the pathology of HIV infection, and has consequences for the design of vaccine strategies.Keywords
This publication has 84 references indexed in Scilit:
- Abortive HIV Infection Mediates CD4 T Cell Depletion and Inflammation in Human Lymphoid TissueCell, 2010
- The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1Nature Immunology, 2010
- A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cellsNature, 2010
- Nonprogressive and Progressive Primate Immunodeficiency Lentivirus InfectionsImmunity, 2010
- RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I PathwayCell, 2009
- RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediateNature Immunology, 2009
- Trex1 Prevents Cell-Intrinsic Initiation of AutoimmunityCell, 2008
- Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virusNature, 2005
- VISA Is an Adapter Protein Required for Virus-Triggered IFN-β SignalingMolecular Cell, 2005
- Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3Cell, 2005