Brain Microvessels Produce 12‐Hydroxyeicosatetraenoic Acid

Abstract
Cerebral microvessels isolated from perfused, adult murine brain produce a compound with the chromatographic properties of a monohydroxyeicosatetraenoic acid when incubated with arachidonic acid or stimulated with calcium ionophore A23187. The formation of this arachidonic acid metabolite is not reduced in the presence of the cyclooxy-genase inhibitor ibuprofen, but it is abolished by the lipoxygenase inhibitor nordihydroguaiaretic acid. Analysis by gas chromatography combined with chemical ionization and electron impact mass spectrometry of reduced and nonre-duced derivatives of the metabolite indicate that the compound is 12-hydroxyeicosatetraenoic acid. Fractions of isolated microvessels enriched with capillaries produce 2.1 times more 12-hydroxyeicosatetraenoic acid per microgram of protein than do fractions of microvessels enriched with arterioles. These studies confirm that brain microvessels can produce 12-hydroxyeicosatetraenoic acid and strongly suggest that cerebral endothelia are the primary source of microvessel-derived 12-hydroxyeicosatetraenoic acid. They further suggest that in brain injury, the liberation and accumulation of arachidonic acid in cerebral tissues may lead to the production of 12-hydroxyeicosatetraenoic acid within microvessels. The 12-hydroxyeicosatetraenoic acid formed in this way may mediate some of the blood-brain barrier and cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.

This publication has 40 references indexed in Scilit: