Abstract
Let N(t) be a birth-death process on 𝒩= {0, 1, 2, ·· ·} governed by the transition rates λn > 0 (n ≧ 0) and μn > 0 (n ≧ 1) where λnλ > 0 and μnμ > 0 as n → ∞ and ρ = λ/μ. Let Tmn be the first-passage time of N(t) from m to n and define It is shown that, when converges in distribution to TBP(μ,λ) as n → ∞ where TΒΡ (μ,λ) is the server busy period of an M/M/1 queueing system with arrival rate μ and service rate λ. Correspondingly T0n/E[T0n] converges to 1 with probability 1 as n →∞. Of related interest is the conditional first-passage time mTrn of N(t) from r to n given no visit to m where m < r < n. As we shall see, the conditional first-passage time of N(t) can be viewed as an ordinary first-passage time of a modified birth-death process M(t) governed by where are generated from λ n and μn . Furthermore it is shown that for and while for and This enables one to establish the relation between the limiting behavior of the ordinary first-passage times and that of the conditional first-passage times.

This publication has 3 references indexed in Scilit: