Low-field magnetoelectric effect at room temperature
Top Cited Papers
- 8 August 2010
- journal article
- research article
- Published by Springer Nature in Nature Materials
- Vol. 9 (10) , 797-802
- https://doi.org/10.1038/nmat2826
Abstract
The discoveries of gigantic ferroelectric polarizaion in BiFeO3 (ref. 1) and ferroelectricity accompanied by a magnetic order in TbMnO3 (ref. 2) have renewed interest in research on magnetoelectric multiferroics(3,4), materials in which magnetic and ferroelectric orders coexist, from both fundamental and technological points of view(5-7). Among several different types of magnetoelectric multiferroic(8,9), magnetically induced ferroelectrics in which ferroelectricity is induced by complex magnetic orders, such as spiral orders, exhibit giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field. Many magnetically induced ferroelectrics showing the magnetoelectric effects have been found in the past several years(10). From a practical point of view, however, their magnetoelectric effects are useless because they operate only far below room temperature (for example, 28 K in TbMnO3 (ref. 2) and 230 K in CuO (ref. 11)). Furthermore, in most of them, the operating magnetic field is an order of tesla that is too high for practical applications. Here we report materials, Z-type hexaferrites, overcoming these problems on magnetically induced ferroelectrics. The best magnetoelectric properties were obtained for Sr3Co2Fe24O41 ceramics sintered in oxygen, which exhibit a low-field magnetoelectric effect at room temperature. Our result represents an important step towards practical device applications using the magnetoelectric effects.Keywords
This publication has 27 references indexed in Scilit:
- Magnetoelectric Effects in Insulating Magnetic MaterialsPublished by SPIE-Intl Soc Optical Eng ,2009
- Classifying multiferroics: Mechanisms and effectsPhysics, 2009
- Spiral Magnets as MagnetoelectricsAnnual Review of Materials Research, 2007
- Multiferroics: a magnetic twist for ferroelectricityNature Materials, 2007
- Multiferroic and magnetoelectric materialsNature, 2006
- Revival of the magnetoelectric effectJournal of Physics D: Applied Physics, 2005
- Magnetic control of ferroelectric polarizationNature, 2003
- Epitaxial BiFeO 3 Multiferroic Thin Film HeterostructuresScience, 2003
- Why Are There so Few Magnetic Ferroelectrics?The Journal of Physical Chemistry B, 2000
- Multi-ferroic magnetoelectricsFerroelectrics, 1994