Abstract
Using the cosmic virial theorem, Press-Schechter analysis and numerical simulations, we compute the expected X-ray background (XRB) from the diffuse IGM with the clumping factor expected from gravitational shock heating. The predicted fluxes and temperatures are excluded from the observed XRB. The predicted clumping can be reduced by entropy injection. The required energy is computed from the two-point correlation function, as well as from Press-Schechter formalisms. The minimal energy injection of 1 keV/nucleon excludes radiative or gravitational heating as a primary energy source. We argue that the intergalactic medium (IGM) must have been heated through violent processes such as massive supernova bursts. If the heating proceeded through supernova explosions, it likely proceeded in bursts which may be observable in high redshift supernova searches. Within our model we reproduce the observed cluster luminosity-temperature relation with energy injection of 1 keV/nucleon if this injection is assumed to be uncorrelated with the local density. These parameters predict that the diffuse IGM soft XRB has a temperature of ~1 keV with a flux near 10 keV/cm^2 s str keV, which may be detectable in the near future.

This publication has 0 references indexed in Scilit: