Unconventional low-energy SUSY from warped geometry
Preprint
- 14 September 2001
Abstract
Supersymmetric models with a warped fifth spatial dimension can solve the hierarchy problem, avoiding some shortcomings of non-supersymmetric constructions, and predict a plethora of new phenomena at typical scales Lambda not far from the electroweak scale (Lambda ~ a few TeV). In this paper we derive the low-energy effective theories of these models, valid at energies below Lambda. We find that, in general, such effective theories can deviate significantly from the Minimal Supersymmetric Standard Model (MSSM) or other popular extensions of it, like the NMSSM: they have non-minimal Kaehler potentials (even in the Mp -> \infty limit), and the radion is coupled to the visible fields, both in the superpotential and the Kaehler potential, in a non-trivial (and quite model-independent) fashion. The corresponding phenomenology is pretty unconventional, in particular the electroweak breaking occurs in a non-radiative way, with tan beta \simeq 1 as a quite robust prediction, while the mass of the lightest Higgs boson can be as high as ~ 700 GeV.Keywords
All Related Versions
- Version 1, 2001-09-14, ArXiv
- Published version: Nuclear Physics B, 620 (1-2), 195.
This publication has 0 references indexed in Scilit: