Growth Inhibition of Macrophage-Like and Other Cell Types by Liposome-Encapsulated, Calcium-Bound, and Free BisphosphonatesIn Vitro
- 1 January 1994
- journal article
- research article
- Published by Taylor & Francis in Journal of Drug Targeting
- Vol. 2 (4) , 299-308
- https://doi.org/10.3109/10611869409015910
Abstract
Bisphosphonates effectively inhibit osteoclastic bone resorption in diseases characterized by excessive bone loss. Liposome-encapsulated clodronate (dichloromethylene bisphosphonate) also is known to inactivate phagocytic cells in vivo, and inhibit the growth of macrophage-like RAW 264 cells in vitro. The macrophage suppressive effect of liposomal clodronate is of interest in autoimmune diseases, like rheumatoid arthritis, in which phagocytic cells are involved in inflammatory processes. Earlier in vivo studies suggested that liposomal clodronate is a far more potent inactivator of macrophages than liposomal forms of two other bisphosphonate compounds, pamidronate (3-amino-l-hydroxypropylidene bisphosphonate), and etidronate (l-hydroxyethylidene-l, l-bisphosphonate). We examined the growth inhibitory properties of these three bisphosphonates with macrophage-like RAW 264 cells and with other types of cells in vitro. All three bisphosphonates encapsulated in liposomes effectively inhibited the growth of RAW 264 and CV1-P cells, while free drugs were 20-1000 times less potent growth inhibitors. Also, high extracellular calcium concentrations enhanced the potency of bisphosphonates for RAW 264 cells, indicating that, in addition to liposomes, the uptake of bisphosphonates by macrophages is mediated also by calcium. In all formulations, pamidronate was the most potent compound for the cells, with the exception of CV1-P cells, for which liposomal clodronate was the most potent. The effects of liposomal drugs were selective for highly endocytotic cells. The results suggest that liposome-encapsulated bisphosphonates could provide a specific tool to affect the function of macrophages and all three of these bisphosphonates are potentially effective as macrophage suppressors in autoimmune diseases.Keywords
This publication has 26 references indexed in Scilit:
- THE SYNOVIAL LINING CELLS IN CHRONIC ARTHRITISRheumatology, 1992
- BisphosphonatesDrugs, 1991
- A new method for removal of mononuclear phagocytes from heterogeneous cell populations in vitro, using the liposome-mediated macrophage ‘suicide’ techniqueJournal of Immunological Methods, 1990
- Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro.Journal of Clinical Investigation, 1990
- Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell killJournal of Immunological Methods, 1989
- Dichloromethylenebisphosphonate (Cl2MBP) inhibits bone resorption through injury to osteoclasts that resorb Cl2MBP-coated boneBone and Mineral, 1989
- Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophagesJournal of Bone and Mineral Research, 1987
- Liposome-mediated delivery of pteridine antifolates to cells in vitro: potency of methotrexate, and its α and γ substituentsBiochimica et Biophysica Acta (BBA) - Biomembranes, 1986
- Preparation and characteristics of dichloromethylene diphosphonate-containing liposomesJournal of Microencapsulation, 1986
- Diphosphonates inhibit bone resorption by macrophages in vitroThe Journal of Pathology, 1980