Temporal patterns in the epidemiology of schistosome infections of snails: a model for field data

Abstract
SUMMARY: The prevalence of patent schistosome infections of intermediate host snails often shows seasonal variations. For schistosome, mainlySchistosoma haematobium, infections ofBulinus globosusfield data from Zimbabwe show annual ranges in prevalence from 2% to 30%. In this paper a mathematical model is developed for B. globosus population dynamics and the epidemiology of schistosome infection. The model is a discrete-time analogue of a catalytic model, with an added recruitment term. Snail fecundity and survival are functions of age, infection, and temperature. The pre-patent period of infection is dependent on temperature.Parameter values, and relationships with temperature, are taken from earlier field and laboratory studies. The force-of-infection is estimated from analysis of age-prevalence data. Model predictions, making use of temperature data recorded in the field, are in good agreement with observations over a 2-year period at a study site in Zimbabwe. The key features of interest are a fall in the prevalence of patent infections during the cold season and a rapid rise to a peak early in the hot season. This pattern results from the accumulation of pre-patent infections which fail to develop at low temperatures, but mature en masse, together with new infections, after a few weeks at higher temperatures. Model analysis demonstrates that seasonal patterns in the prevalence of patent infections may be due largely to the influence of temperature on the pre-patent period. Seasonal and year-to-year variations in temperature may therefore have significant epidemiological effects.

This publication has 19 references indexed in Scilit: