Growth Modeling Using Random Coefficient Models: Model Building, Testing, and Illustrations

Abstract
In this article, the authors illustrate how random coefficient modeling can be used to develop growth models for the analysis of longitudinal data. In contrast to previous discussions of random coefficient models, this article provides step-by-step guidance using a model comparison framework. By approaching the modeling this way, the authors are able to build off a regression foundation and progressively estimate and evaluate more complex models. In the model comparison framework, the article illustrates the value of using likelihood tests to contrast alternative models (rather than the typical reliance on tests of significance involving individual parameters), and it provides code in the open-source language R to allow readers to replicate the results. The article concludes with practical guidelines for estimating growth models.

This publication has 26 references indexed in Scilit: