Linear constellation precoding for OFDM with maximum multipath diversity and coding gains

Abstract
Orthogonal frequency-division multiplexing (OFDM) converts a frequency-selective fading channel into parallel flat-fading subchannels, thereby simplifying channel equalization and symbol decoding. However, OFDM's performance suffers from the loss of multipath diversity, and the inability to guarantee symbol detectability when channel nulls occur. We introduce a linear constellation precoded OFDM for wireless transmissions over frequency-selective fading channels. Exploiting the correlation structure of subchannels and choosing system parameters properly, we first perform an optimal subcarrier grouping to divide the set of subchannels into subsets. Within each subset, a linear constellation-specific precoder is then designed to maximize both diversity and coding gains. While greatly reducing the decoding complexity and simplifying the precoder design, subcarrier grouping enables the maximum possible diversity and coding gains. In addition to reduced complexity, the proposed system guarantees symbol detectability regardless of channel nulls, and does not reduce the transmission rate. Analytic evaluation and corroborating simulations reveal its performance merits.

This publication has 18 references indexed in Scilit: