A Field and Laboratory Study of Wave Damping by Grease Ice

Abstract
In a field and laboratory study we discuss the formation, growth, and wave-absorption properties of grease ice. Our field observations show that grease-ice formation occurs under cold windy conditions in both leads and polynyas. In leads grease ice forms in the open water, then is herded to the down-wind edge of the lead; in polynyas a Langmuir circulation herds the grease ice into long plumes parallel to the wind. In the laboratory we grow grease ice in a wave tank and measure its wave absorption properties for single-frequency, two-dimensional waves. On a large scale we find that the thickness of the grease ice, which increases away from the paddle, is determined by a balance between the wave-momentum flux and the free-surface tilt. On a small scale our photographs show that the crystals which make up the grease ice consist of discs measuring about 1 mm in diameter and 1–10 µm thick, which at low rates of shear sinter together into larger clumps yielding a viscosity increase. To measure this non-linear viscosity, we study the decay of wave amplitude between two critical distances measured inwards from the leading edge. The first occurs when the depth of grease ice exceeds k−1 where k is the wave number; the second further distance is a line of transition from liquid to solid behavior which we call the dead zone. Between these two distances the wave amplitude decays with a linear slope α, which increases as (a 0 k)2 where a0 is the wave amplitude in open water. Concurrent measurements of ice concentration show that it increases from values of 18–22% at the leading edge to a local maximum of 32–44% at the dead zone, while the values at the dead zone increase non-linearly with a0k. Finally, comparison of the observed α to that calculated from a yield-stress viscosity model shows if the yield-stress coefficient is proportional to the incident wave-momentum flux, the model predicts the observed α. Résumé Dans une étude sur le terrain et en laboratoire nous discutons la formation, la croissance et les propriétés d’absorption de la houle par la glace pelliculaire. Nos observations de terrain montrent la formation de glace pelliculaire sous conditions froides et ventées à la fois dans les cheneaux et dans les polynias. Dans les cheneaux la glace pelliculaire se forme dans l’eau libre, puis est accumulée vers le côté au vent du chenal; dans les polynias une circulation de Langmuir rassemble la glace pelliculaire en longues files parallèles au vent. En laboratoire, nous faisons croître la glace pelliculaire dans une enceinte à houle artificielle et mesurons ses propriétés d’absorption pour des houles à deux dimensions à fréquence unique. Sur une grande échelle, nous trouvons que l’épaisseur de la glace pelliculaire qui augmente quand on s’éloigne de la pale de l’agitateur est déterminée par un équilibre entre l’intensité du moment de la houle et la pente de la surface libre. A petite échelle, nos photographies montrent que les cristaux de glace qui construisent la glace pelliculaire consistent en disques mesurant environ 2 mm de diamètre et 1 à 10 m d’épaisseur, qui pour de faibles variations de contrainte, s’agglomèrent en plus grands amas, provoquant un accroissement de la viscosité. Pour mesurer cette viscosité, qui n’est pas linéaire, nous étudions l’abaissement de l’amplitude de la houle entre deux distances critiques, depuis la rive. La première distance critique se situe au point où la profondeur de la glace pelliculaire excède k −1 où k est le nombre de la houle; la seconde distance critique est une ligne de transition entre les comportements liquides et solides que nous appelons la zone morte. Entre ces deux distances, l’amplitude de la houle décroît selon une pente linéaire qui s’accroît comme (a 0 k)2 où a0 est l’amplitude de la houle en eau libre. Des mesures simultanées de la concentration de la glace montrent que cette concentration croît depuis 18 à 22% sur la bordure externe jusqu’à un maximum local de 32 à 44% dans la zone morte, tandis que les valeurs dans la zone morte croissent non linéairement avec a 0 k. Finalement la comparaison des valeurs observées pour et de celles calculées à partir d’un modèle de viscosité correspondant aux contraintes observées est proportionnel au moment de flux de la houle incidente, le modèle prévoit bien la valeur observée de α. Zusammenfassung In einer Feld- und Laboruntersuchung wird die Bildung, das Wachstum und die Fähigkeit zur Wellendämpfung von Eisbrei diskutiert. Die Feldbeobachtungen zeigen, dass sich Eisbrei unter kalten, windreichen Bedingungen sowohl in Rinnen wie in Tümpeln bildet. In Rinnen entsteht der Eisbrei im offenen Wasser und wird dann auf der Leeseite der Rinne zusammengetrieben; in Tümpeln sammelt eine Langmuir-Zirkulation den Eisbrei in langen Streifen parallel zum Wind. Im Labor wird der Eisbrei in einem Wellentank erzeugt; seine Eigenschaften der Wellendämpfung für zweidimensionale Wellen einer einzelnen Frequenz lassen sich messen. Im grossen ergibt sich, dass die Dicke des Eisbreis, die gegen die Rührstange hin abnimmt, durch das Gleichgewicht zwischen dem Fluss des Wellenmoments und der Neigung der freien Oberfläche bestimmt wird. Im kleinen zeigen unsere Photographien, dass die Kristalle, aus denen der Eisbrei besteht, Scheibchen von etwa 1 mm Durchmesser und 1–10 μm Dicke sind, die bei kleinen Scherraten in grössere Klumpen zusammenbacken und dadurch eine Zunahme der Viskosität bewirken. Diese nicht-lineare...

This publication has 3 references indexed in Scilit: