Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution
Open Access
- 1 June 1998
- journal article
- research article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 499 (2) , 883-888
- https://doi.org/10.1086/305672
Abstract
We have obtained high-resolution (FWHM = 015) deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6−0.67+0.47 M☉. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY Aur B. Comparison of our IR images and the millimeter images of the gas clearly show that the dust seen in our IR images traces the gas in the circumbinary disk, as was also the case with GG Tau.Keywords
This publication has 25 references indexed in Scilit:
- Adaptive Optics Infrared Imaging Polarimetry and OpticalHSTImaging of Hubble's Variable Nebula (R Monocerotis/NGC 2261): A Close Look at a Very Young Active Herbig Ae/Be starThe Astrophysical Journal, 1997
- The Multiplicity of Pre–Main‐Sequence Stars in Southern Star‐forming RegionsThe Astrophysical Journal, 1997
- Adaptive Optics 0.̋2 Resolution Infrared Images of HL Tauri: Direct Images of an Active Accretion Disk around a ProtostarThe Astrophysical Journal, 1997
- Mass Flow through Gaps in Circumbinary DisksThe Astrophysical Journal, 1996
- Speckle Imaging Measurements of the Relative Tangential Velocities of the Components of T Tauri Binary StarsThe Astronomical Journal, 1995
- New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convection modelThe Astrophysical Journal Supplement Series, 1994
- The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging surveyThe Astronomical Journal, 1993
- Infrared spectroscopy of T Tauri starsThe Astrophysical Journal, 1991
- Infrared standard starsThe Astronomical Journal, 1982
- Observational studies of pre-main-sequence evolutionThe Astrophysical Journal Supplement Series, 1979