Effect of Lanthanum Ions on Neuromuscular Transmission in Insects
Open Access
- 1 November 1983
- journal article
- research article
- Published by The Company of Biologists in Journal of Experimental Biology
- Vol. 107 (1) , 405-414
- https://doi.org/10.1242/jeb.107.1.405
Abstract
The effect of extracellular lanthanum on neuromuscular transmission was studied in cockroach leg muscle and larval mealworm ventral muscle by means of microelectrodes. Miniature excitatory postsynaptic potential (MEPSP) frequency was markedly increased after lanthanum was added, in the presence and absence of calcium. The potentiation by La3+ was suppressed in a high Ca2+ saline and enhanced in the absence of Ca2+. Lanthanum ions blocked neuromuscular transmission at a concentration as low as 0-1 mm. The quantal content estimated by the failure method was reduced by 80% in the presence of 0·1 mm-La3+. The reduction in the EPSP amplitude by La3+ may be due to a decrease in the amount of transmitter released by a nerve impulse. The response to L-glutamate applied iontophoretically was also reduced in the presence of La3+. It seems unlikely that La3+ and L-glutamate were competing for a common binding site on the postsynaptic membrane since the apparent maximum of the dose-response curve for glutamate-induced depolarization was reduced in the presence of La3+. External recording of MEPSPs showed that adding lanthanum to the bathing medium increased the time constant of decay of the potential. These results suggest that lanthanum does indeed have a postsynaptic action in addition to its prejunctional action in insect muscle fibres.This publication has 23 references indexed in Scilit:
- Effects of strontium ions on end-plate channel properties.The Journal of Physiology, 1980
- L-glutamate as an excitatory transmitter at the neuromuscular junction of a beetle larvaJournal of Insect Physiology, 1980
- Calcium conductance of acetylcholine-induced endplate channelsNature, 1979
- INTRACELLULAR AND EXTRACELLULAR CALCIUM IONS IN TRANSMITTER RELEASE AT THE NEUROMUSCULAR SYNAPSE*Annals of the New York Academy of Sciences, 1978
- Effects of [Ca2+] and [Mg2+] on the decay of miniature endplate currentsNature, 1978
- Lanthanum Ions abolish the “Calcium Response” of Nerve TerminalsNature, 1971
- Influence of lanthanum on transmitter release at the neuromuscular junctionJournal of Neurobiology, 1971
- Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anesthetic drugsBiochemistry, 1969
- Interactions of La3+ and local anesthetic drugs with mitochondrial Ca++ and Mn++ uptakeArchives of Biochemistry and Biophysics, 1968
- Strontium as a Substitute for Calcium in the Process of Transmitter Release at the Neuromuscular JunctionNature, 1966