Radiation from the first forming stars
Preprint
- 28 March 2002
Abstract
The evolution of radiation emitted during the dynamical collapse of metal-free protostellar clouds is investigated within a spherically symmetric hydrodynamical scheme that includes the transfer of radiation and the chemistry of the primordial gas. The cloud centre collapses on a time scale of about 10^5-10^6 years, thanks to line cooling from molecular hydrogen (H2). For most of the collapse time, when the evolution proceeds self-similarly, the luminosity slowly rises up to about 10^36 erg/s and is essentially due to H2 IR line emission. Later, continuum IR radiation provides an additional contribution, which is mostly due to the accretion of an infalling envelope upon a small hydrostatic protostellar core which develops in the centre. We follow the beginning of the accretion phase, when the enormous accretion rate (~ 0.1 Msun/yr) produces a very high continuum luminosity of about 10^36 erg/s. Despite the high luminosities, the radiation field is unable to affect the gas dynamics during the collapse and the first phases of accretion, because the opacity of the infalling gas is too small; this is quite different from present-day star formation. We also find that the protostellar evolution is similar among clouds with different initial configurations, including those resulting from 3D cosmological simulations of primordial objects; in particular, the shape of the molecular spectra is quite universal. Finally, we briefly discuss the detectability of this pristine cosmic star formation activity.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: