The metabolism of 1,3-cyclohexadiene by liver microsomal mono-oxygenase

Abstract
1. 1,3-Cyclohexadiene exhibits type I binding spectra with microsomal cytochrome P-450 of either untreated, or phenobarbital- or 3-methylcholanthrene-treated mice. In all cases, two values of Ks can be measured, indicating a different affinity of 1,3-cyclohexadiene towards the cytochrome P-450 species. 2. Mouse-liver microsomal mono-oxygenase metabolizes 1,3-cyclohexadiene to the corresponding mono-epoxide, which is rapidly hydrolysed to trans-3-cyclohexene-1,2-diol and trans-2-cyclohexene-1,4-diol. This hydrolysis was proved to be essentially non-enzymic. 3. A simple gas-chromatographic method was used to quantify the diols and to determine the kinetic constants (Km and Vmax of 1,3-cyclohexadiene mono-epoxidase. 4. Epoxide formation, as determined by diol production from 1,3-cyclohexadiene metabolism, was NADPH- and O2-dependent and was inhibited by CO and SKF-525A.