Polymer-Supported Approach for Solution-Phase Synthesis of Cysteine Trap Protease Inhibitors: Procedure for Straightforward Optimization of the P1−P1‘ Pocket

Abstract
Peptide-based reversible and irreversible cysteine proteases inhibitors are well reported in the literature. Many of these compounds have an electrophilic carbonyl group as a cysteine trap in the place of a scissile amide moiety of the natural substrate. As a common mechanism strategy, we have designed a probe library of a cysteine trap for rapid optimization of P1−P1‘ pockets of different cysteine proteases. The synthesis of this library using a straightforward methodology based on polymer-supported reagents and scavengers to avoid tedious purification steps has been achieved. For the selective monobromination of diazo ketones, preparation of a new supported reagent, piperidinoaminomethylpolystyrene hydrobromide, is also described.