Abstract
We develop a graded tensor calculus corresponding to arbitrary abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions, like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced, and some of their basic properties are described.

This publication has 9 references indexed in Scilit: