Abstract
This paper presents a tutorial of geometric algebra, a very useful but generally unappreciated extension of vector algebra. The emphasis is on physical interpretation of the algebra and motives for developing this extension, and not on mathematical rigor. The description of rotations is developed and compared with descriptions using vector and matrix algebra. The use of geometric algebra in physics is illustrated by solving an elementary problem in classical mechanics, the motion of a freely spinning axially symmetric rigid body.

This publication has 0 references indexed in Scilit: