Purification and Characterization of a Prokaryotic Xanthine Dehydrogenase from Comamonas acidovorans

Abstract
Xanthine dehydrogenase (XDH) is induced in Comamonas acidovorans cells incubated in a limited medium with hypoxanthine as the only carbon and nitrogen source. The enzyme has been purified to homogeneity using standard techniques and characterized. It contains two subunits with Mr values of 90 and 60 kDa. Gel filtration studies show the enzyme to have an α2β2 native structure. No precursor form of the enzyme is observed on Western blot analysis of cell extracts obtained at various stages of enzyme induction. Metal analysis of the purified enzyme shows 1.1 Mo, 4.0 Fe, and 3.6 phosphorus atoms per αβ protomer. Cofactor analysis shows the enzyme to contain a single molybdopterin mononucleotide and one FAD per αβ protomer. Electron spin resonance and circular dichroism spectral studies of the oxidized and reduced forms of the enzyme suggest the Fe centers to be two nonidentical [2Fe-2S] clusters. Electron spin resonance signals due to Mo(V) and neutral FAD radical are also observed in the reduced form of the enzyme. Purified enzyme preparations ranged from 70% to 100% functionality. The enzyme is irreversibly inactivated by CN- and is inhibited on incubation with allopurinol. With xanthine and NAD+ as substrates the enzyme has a specific activity of 50 units/mg, a kcat value of 120 s-1, an activity/flavin ratio of 1930, and respective Km values of 66 and 160 mM. Using 8-d-xanthine as substrate, a DV value of 1.8 is found with no change in Km. Thus, the Km and KD values of the enzyme for xanthine are equal. These data show Comamonas XDH to exhibit structural properties similar to bovine milk xanthine oxidase/dehydrogenase and to chicken liver xanthine dehydrogenase. Although the bacterial enzyme exhibits a 6−7-fold greater turnover rate than the bovine or avian enzymes, the catalytic efficiencies (as measured by V/K) are similar for all three enzymes.

This publication has 26 references indexed in Scilit: