On the Dimension of Modules and Algebras, IV: Dimension of Residue Rings of Hereditary Rings
- 1 June 1956
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 10, 87-95
- https://doi.org/10.1017/s002776300000009x
Abstract
A ring (with unit element) Λ is called semi-primary if it contains a nilpotent two-sided ideal N such that the residue ring Γ = Λ/N is semi-simple (i.e. l.gl.dim Γ = r.gl.dim Γ = 0). N is then the (Jacobson) radical of Λ. Auslander [1] has shown that if Λ is semi-primary thenThe common value is denoted by gl. dim Λ. On the other hand, for any ring Λ the following conditions are equivalent : (a) 1. gl. dim Λ ≦ 1, (b) each left ideal in Λ is projective, (c) every submodule of a projective left Λ-module is projective. Rings satisfying conditions (a)-(c) are called hereditary. For integral domains the notions of “hereditary ring” and “Dedekind ring” coincide.Keywords
This publication has 5 references indexed in Scilit:
- On the Dimension of Modules and Algebras (III): Global DimensionNagoya Mathematical Journal, 1955
- On the Dimension of Modules and Algebras, INagoya Mathematical Journal, 1955
- Algebras of cohomologically finite dimensionCommentarii Mathematici Helvetici, 1954
- Algebras With Vanishing n-Cohomology GroupsNagoya Mathematical Journal, 1954
- On the Cohomology Theory for Associative AlgebrasAmerican Journal of Mathematics, 1952