Improving crop type determination using satellite imagery: A study for the Regione del Veneto, Italy

Abstract
The Regione del Veneto (Italy) is cooperating with the University of California, Santa Barbara and other researchers in Italy and the U.S.A. to develop a system of econometric crop production modeling. Five crops are to be included in this project: small grains (wheat and barley), corn, sugar beets, soybeans, orchards and vineyards. A critical part of the crop yield modeling process is the identification of crops using multispectral satellite data. This paper explores two strategies to improve crop classification accuracies: (1) use of ancillary data stored in digital format and (2) use of multitemporal data. Ancillary information stored on digital files were used in this research to remove (mask) non‐agricultural areas from satellite image data. Comparison between the classification of masked and unmasked images showed that improvement ranged from 3% to 26% depending on crop type. The multidate classification was performed by compiling an image of transformed spectral bands and three TM‐5 bands. The transformed bands were TM band 4 over TM band 3. Based on the work conducted in this study it is clear that crop type determination from satellite imagery is possible for small field agricultural areas such as those found in Italy.
Keywords

This publication has 5 references indexed in Scilit: