Abnormal FGFR 3 Expression in Cartilage of Thanatophoric Dysplasia Fetuses

Abstract
Thanatophoric dysplasia (TD), the commonest lethal skeletal dysplasia in humans, is accounted for by recurrent mutations in the fibroblast growth factor receptor 3 gene (FGFR 3), causing its constitutive activation in vitro. Taking advantage of medical abortion of 18 TD fetuses, cartilage sections were studied for FGFR 3 gene expression by in situ hybridization and immunohistochemistry. Specific antibodies revealed high amounts of FGFR 3 in cartilage of TD fetuses with no increased level of the corresponding mRNA. The specific signal was mainly detected in the nucleus of proliferative and hypertrophic chondro-cytes. Based on this observation and the abnormal expression of collagen type X in hypertrophic TD chondrocytes, we suggest that constitutive activation of the receptor through formation of a stable dimer increases its stability and promotes its translocation into the nucleus, where it might interfere with terminal chon-drocyte differentiation.