Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy
Open Access
- 1 January 2006
- journal article
- Published by Microbiology Society in Journal of General Virology
- Vol. 87 (1) , 29-38
- https://doi.org/10.1099/vir.0.81417-0
Abstract
Vaccinia virus (VACV) is the vaccine that was used to eradicate smallpox and is being developed as a recombinant vaccine for other pathogens. Removal of genes encoding immunomodulatory proteins expressed by VACV may enhance virus immunogenicity and improve its potential as a vaccine. Protein A41 is a candidate for removal, having sequence similarity to the VACV chemokine-binding protein, vCKBP, and an association with reduced inflammation during dermal infection. Here, it is shown that, at low doses, VACV strain Western Reserve (WR) lacking A41L (vΔA41L) was slightly more virulent than wild-type and revertant controls after intranasal infection of BALB/c mice. The primary immune response to vΔA41L was marked by an increase in the percentage of VACV-specific gamma interferon-producing CD8+ T cells and enhancement of cytotoxic T-cell responses in the spleen. However, this augmentation of cellular response was not seen in lung infiltrates. Splenic CD8+ T-cell responses were also enhanced when VACV strain modified vaccinia virus Ankara (MVA) lacking A41L was used to immunize mice. Lastly, immunization with VACV MVA lacking A41L provided better protection than control viruses to subsequent challenge with a 300 LD50 dose of VACV WR. This study provides insight into the immunomodulatory role of A41 and suggests that MVA lacking A41 may represent a more efficacious vaccine.Keywords
This publication has 44 references indexed in Scilit:
- Inactivation of the viral interleukin 1 receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus AnkaraJournal of General Virology, 2005
- Protection against Lethal Vaccinia Virus Challenge in HLA-A2 Transgenic Mice by Immunization with a Single CD8+T-Cell Peptide Epitope of Vaccinia and Variola VirusesJournal of Virology, 2004
- Vaccinia Virus Interleukin-18-Binding Protein Promotes Virulence by Reducing Gamma Interferon Production and Natural Killer and T-Cell ActivityJournal of Virology, 2003
- Steroid Hormone Synthesis by Vaccinia Virus Suppresses the Inflammatory Response to InfectionThe Journal of Experimental Medicine, 2003
- Effector and memory T-cell differentiation: implications for vaccine developmentNature Reviews Immunology, 2002
- A soluble receptor for interleukin-1β encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infectionCell, 1992
- Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding proteinCell, 1992
- Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulenceJournal of General Virology, 1991
- Infectious vaccinia virus recombinants that express hepatitis B virus surface antigenNature, 1983
- MVA-Stufenimpfung gegen PockenDeutsche Medizinische Wochenschrift (1946), 1974