Abstract
The molecular basis of pathogenesis by Xanthomonas oryzae pv. oryzae has been partly elucidated by the identification of a gene, hrpXo, required for bacterial blight on rice. A mutation in hrpXo results in the loss of pathogenicity on rice and the loss of hypersensitivity on nonhosts such as Datura stramonium and radishes. Pathogenicity and its ability to cause the hypersensitive reaction is restored by complementing the mutant with the heterologous hrpXc gene derived from X. campestris pv. campestris. Conversely, hrpXo complements nonpathogenic mutants of X. campestris pv. campestris and X. campetstris pv, armoraciae. Mutants bearing the heterologous hrpX gene are restored in their abilities to cause diseases typical of their chromosomal background and not the hypersensitive reaction on their respective hosts. The hrpXo and hrpXc genes are therefore functionally equivalent, and this functional equivalence extends into X. campestris pv. armoraciae and possibly into other X. campestris pathovars, since this gene is highly conserved among eight other pathovars tested. Sequence analyses of hrpXo revealed an open reading frame of 1,452 bp with a coding capacity for a protein of 52.3 kDa. The protein contains a consensus domain for possible protein myristoylation whose consequence may result in a loss of recognition by host defense and surveillance systems.